Algoritmos Genéticos - Algoritmos Genéticos: Búsqueda y Optimización por Selección Natural

Blog sobre Optimizacion Avanzado y Algoritmos Genéticos: Búsqueda y Optimización por Selección Natural en Argentina

El AG es una búsqueda meta-heurística al igual que una técnica de optimización basada en principios presentes en la evolución natural. Pertenece a una clase más larga de algoritmos evolutivas.

El AG mantiene una población de cromosomas—un set de soluciones posibles para el problema. La idea es que la “evolución” encuentre una solución óptima para el problema después de un número de generaciones sucesivas—similar a una selección natural.

El AG imita tres procesos evolutivos: selección, entrecruzamiento cromosómico y mutación.

Tal como la selección natural, el concepto central de la selección AG es la adaptación. Los cromosomas que se adaptan mejor tienen una mayor oportunidad de sobrevivir. La adaptación es una función que mide la calidad de la solución representada por el cromosoma. En esencia, cada cromosoma dentro de la población representa los parámetros de entrada, como el volumen y precio de cambio, cada cromosoma, lógicamente, consistirá de dos elementos. Como los elementos están codificados dentro del cromosoma es otro tema.

Durante la selección, los cromosomas forman parejas de padres para la reproducción. Cada niño toma características de sus padres. Básicamente, el niño representa una recombinación de características de sus padres: Algunas de las características son tomadas de un padre y otras del otro padre. Adicionalmente a la recombinación, algunas de las características pueden mutar.

Ya que los cromosomas más adecuados producen más niños, cada generación subsecuente será más adecuada. En algún punto, una generación contendrá un cromosoma que representará una solución lo suficientemente buena para nuestro problema.

El AG es poderoso y ampliamente aplicable a problemas complejos. Hay una clase extensa de problemas de optimización que son un tanto difícil de resolver usando técnicas convencionales de optimización. Los algoritmos genéticos son algoritmos eficientes que poseen soluciones aproximadamente óptimas. Las ya bien conocidas aplicaciones incluyen programación, transporte, planificación de ruta, tecnologías de grupo, diseño de plano, entrenamiento de red neural y muchos otros.

Visitar articulo completo sobre Algoritmos Genéticos: Búsqueda y Optimización por Selección Natural

Comparte tu opinion o comenta

Cuenta tu opinion o amplia el contenido del articulo